skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stull, Gregory_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Understanding how the intrinsic ability of populations and species to meet shifting selective demands shapes evolutionary patterns over both short and long timescales is a major question in biology. One major axis of evolutionary flexibility can be measured by phenotypic integration and modularity. The strength, scale, and structure of integration may constrain or catalyze evolution in the face of new selective pressures. We analyze a dataset of seven leaf measurements across Vitaceae to examine how correlations in trait divergence are linked to transitions between freezing and nonfreezing habitats. We assess this by applying a custom algorithm to compare the timing of habitat shifts to changes in the structure of evolutionary trait correlation at discrete points along a phylogeny. We also explore these patterns in relation to lineage diversification rates to understand how and whether patterns in the evolvability of complex multivariate phenotypes are linked to higher‐level macroevolutionary dynamics. We found that shifts in the structure, but not the overall strength, of phylogenetic integration of leaves precipitate colonization of freezing climates. Lineages that underwent associated shifts in leaf trait integration and subsequent movement into freezing habitats also displayed lower turnover and higher net diversification, suggesting a link among shifting vectors of selection, internal constraint, and lineage persistence in the face of changing environments. 
    more » « less